Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins.

نویسندگان

  • Hiroki Miyazaki
  • Naohiko Anzai
  • Sophapun Ekaratanawong
  • Takeshi Sakata
  • Ho Jung Shin
  • Promsuk Jutabha
  • Taku Hirata
  • Xin He
  • Hiroshi Nonoguchi
  • Kimio Tomita
  • Yoshikatsu Kanai
  • Hitoshi Endou
چکیده

Human organic anion transporter 4 (OAT4) is an apical organic anion/dicarboxylate exchanger in the renal proximal tubules and mediates high-affinity transport of steroid sulfates such as estrone-3-sulfate (E1S) and dehydroepiandrosterone sulfate. Here, two multivalent PDZ (PSD-95/Discs Large/ZO-1) proteins PDZK1 and NHERF1 were examined as interactors of OAT4 by a yeast two-hybrid assay. These interactions require the extreme C-terminal region of OAT4 and the first and fourth PDZ domains of PDZK1 and the first PDZ domain of NHERF1. These interactions were confirmed by surface plasmon resonance assays (K(D): 36 nM, 1.2 microM, and 41.7 microM, respectively). In vitro binding assays and co-immunoprecipitation studies revealed that the OAT4 wild-type but not a mutant lacking the PDZ motif interacted directly with both PDZK1 and NHERF1. OAT4, PDZK1, and NHERF1 proteins were shown to be localized at the apical membrane of renal proximal tubules. The association with PDZK1 or NHERF1 enhanced OAT4-mediated E1S transport activities in HEK293 cells (1.2- to 1.4-fold), and the deletion of the OAT4 C-terminal PDZ motif abolished this effect. The augmentation of the transport activity was accompanied by alteration in V(max) of E(1)S transport via OAT4 and was associated with the increased surface expression level of OAT4 protein. This study indicates that the functional activity of OAT4 is modulated through the PDZ interaction with the network of PDZK1 and NHERF1 and suggests that OAT4 is involved in the regulated apical organic anion handling in the renal proximal tubules, provided by the PDZ scaffold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted disruption of the PDZK1 gene by homologous recombination.

Proteins containing PDZ domains are involved in a large number of biological functions, including protein scaffolding, organization of ion channels, and signal transduction. We recently identified a novel PDZ domain-containing protein, PDZK1, that is selectively expressed in normal tissues, where it is associated and colocalized with MAP17, a small 17-kDa membrane-associated protein; cMOAT, an ...

متن کامل

Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets.

The canalicular membrane of rat hepatocytes contains an ATP-dependent multispecific organic anion transporter, also named multidrug resistance protein 2, that is responsible for the biliary secretion of several amphiphilic organic anions. This transport function is markedly diminished in mutant rats that lack the transport protein. To assess the role of vesicle traffic in the regulation of cana...

متن کامل

PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF...

متن کامل

PDZK1 regulates two intestinal solute carriers (Slc15a1 and Slc22a5) in mice.

Gastrointestinal (GI) absorption of certain therapeutic agents is thought to be mediated by solute carrier (SLC) transporters, although minimal in vivo evidence has been reported. Here, we show key roles of postsynaptic density 95/disk-large/ZO-1 (PDZ) domain-containing protein, PDZK1, as a regulatory mechanism of two solute carriers, Slc15a1 (oligopeptide transporter PEPT1) and Slc22a5 (carnit...

متن کامل

Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells.

Proteins expressing postsynaptic density (PSD)-95/Drosophila disk large (Dlg)/zonula occludens-1 (ZO-1) (PDZ) domains are commonly involved in moderating receptor, channel, and transporter activities at the plasma membrane in a variety of cell types. At the apical membrane of renal proximal tubules (PT), the type IIa NaP(i) cotransporter (NaP(i)-IIa) binds specific PDZ domain proteins. Shank2E ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2005